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S u m m a r y  

A Monte-Carlo simulation procedure of kinetically controlled structure growth including 
network formation determined by generalized Smoluchowski equations was described. In 
addition to intermolecular reactions affected by possible time and space long-range cor- 
relations, cyclization or degradation reactions can be considered. The kernel of these 
reactions can be a function of not only the numbers and types of the reactive groups 
but also of the composition and structure of the molecule. The random number genera- 
tor selects a certain reaction event characterized by its rate out of all possible events at 
four decision levels, (1) reaction mechanism, (2) types of reacting groups, (3) selection of 
molecule and (4) its reaction partner. 

I n t r o d u c t i o n  

There exist three groups of theoretical methods of simulation of polymer network forma- 
tion: 

(1) Generation of structures from monomeric units or other structural fragments (Flory- 
Stockmayer theory, theory of branching processes (cascade theory), recursive theory, 
etc.); 

(2) Evolution of structures viewed as a kinetic process and described by kinetic differ- 
ential equations; 

(3) Simulation of structure growth in d-dimensional space (lattice or off-lattice perco- 
lation). 

As discussed elsewhere [1], the increase in connectivity of chemical structures (net- 
work formation) is primarily determined by bond formation between reactive sites in 
structure elements (units, molecules) but it can also be affected by long-range connec- 
tivity (time) correlations and spatial correlations. The long-range correlations are not 
inherent to group (1) theories because, by splitting the bonds existing between smaller 
fragments in molecules and recombining these fragments randomly, the information on 
long-range correlations (memory) is lost. The advantage of these approaches can be found 
in their simplicity and ability to describe various structural details. They may fail partly 
for complex reaction mechanisms (with initiation) and fully for strong spatial correlations 
- cyclization, excluded volume effects and specific diffusion control. 
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The simulation of network formation in space can in principle take into account both 
types of long-range correlations but at present it still suffers from the relatively unrealistic 
ways of doing so. The difficulty of introduction of a realistic mobilities (affected by bond 
formation), which drive the proper functional groups together close enough to make a 
bond, represents the main problem. The critical region has been the main domain of 
application of percolation techniques to polymer networks; it has been found that the 
critical exponents do depend on the dimensionality of space but not on the lattice type 
or details of the branching process [2, 3]. For modelling the structure growth throughout 
a wide conversion range, these "details" matter very much. 

The kinetic generation occupies an intermediate position in that the long-range time 
(connectivity) correlations can be dealt with rigorously. In the classical kinetic theory, 
the rate constant of bimolecular combination of two molecules is proportional to the 
product of the numbers of groups in each molecule. However, one can go much farther 
and, by modifying the mass action law, get a reasonable approximation for the effects of 
spatial correlations as will be shown in more detail below. This modification is possible 
because one can make the respective rate constants dependent not only on the numbers 
and reactivities of the reacting functional groups, but also on other structural features of 
the reacting molecules like size, composition, symmetry, number of cycles, etc., i.e. the 
parameters that affect the reaction ability (apparent reactivity) of a given group. In such 
a way, one can simulate the excluded volume or limited diffusion effects in dependence 
on the structure evolution. Generalized kinetic equations describing structure evolution 
are called Smoluchowski coagulation equations and the generalized rate constant is called 
kernel of these equations. 

Although conceptually the kinetic or coagulation differential equations belong to 
the mean-field category (average concentrations of molecules and thus groups they bear 
are considered), the non-mean-field effects are considered by modifying the reactivity of a 
group making it dependent on the structure of its carrier, e.g. its diffusivity. The effects of 
simple structure variations of the kernel were already investigated by several authors (cf. 
e.g. refs. 4-6). Delays in formation of an infinite cluster were observed or the formation 
of an infinite cluster was prevented. Important was also the fact that the non-classical 
kernels gave non-classical (non-mean-field) critical exponents the values of which, in some 
cases, were not far from the values of the percolation exponents. 

The generalized kinetic theory thus seems to be suitable for description of non-ideal 
cases of network build-up. The relation between the forms of the kernels and the structure 
evolution will be investigated later. The purpose of this paper is to explain methods 
for solution of the generalized kinetic equations because it is known that the infinite 
systems of general kinetic differential equations can be solved neither analytically nor 
numerically. In this paper, we describe a Monte-Carlo method for simulation of structure 
evolution determined by differential equations of the Smoluchowski type. The simulation 
is performed in a system composed of a finite number of monomeric units. The simulation 
idea is based on the method used previously for a specific system and smaller number, by 
several orders of magnitude, of units [7]. In this communication, the methods of location 
of the critical point and determination of a few pregel and postgel parameters will be 
analyzed. For comparison, the exact results for the random trifunctional polycondensation 
will be used in Part II. 
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Kine t i c  (coagula t ion)  equa t ions  

In the kinetic or coagulation theories, the structure evolution is described by sets of dif- 
ferential equations for temporal changes of concentrations of each distinguishable species. 
The criterion of distinctness depends on our choice and may go down to a full topological 
information on this species described by its adjacency matrix. For simplicity, in what 
follows, we will restrict ourselves to number of functional groups (vector l) and building 
units (vector x) and possibly bonds (vector m) of distinguishable types. 

In the course of a crosslinking reaction, the molecule A(x, 1) can be transformed into 
another species by a number of chemical reactions. The most typical are listed bellow: 

IntermolecuIar combination (subscript I) 

A(x, 1) + A(x', l') g'(b'l~';x'x'"") A(x + x', 1 + l' - l j  - lk) (1) 

where l j  and lk are vectors the elements of which are zeros except for the j - th and k-th, 
respectively, which are unities. 

IntramoIecular (cyclization) reaction (C) 

A(x, 1) gc(b,tk;x,...) A(x,1 - l j  - 1~) (2) 

Degradation reaction (D) by splitting the r-th type bond 

A(m;x,1)  Ko(mr;x,l,...) , A ( m - m ' - l ~ ; x - x ' , l - l ' ) + A ( m ' ; x ' , l ' )  (3) 

The degradation reactions will not be considered hereinafter. However, depending on the 
reaction mechanism other formulations of the reaction balance are possible. 

The quantities KI, Kr and KD are kernels (effective rate constants) which depend 
not only on the numbers and reactivities of the functional groups (bonds) but possibly 
also on the internal structure of the molecule. 

Each of the transformation equations given above corresponds to a set of differential 
equations depending on the type of pairs of groups or bonds that react. The type of a 
group is determined not only by its chemical nature but also by its reactivity. 

Thus, the rates of transformation (T) of the molecules A(x, 1) by reactions with all 
other molecules through the j- th and k-th groups, Viwjk(x, l), is equal to 

VlT,jk(X, l) ------- C(X, 1) y~ Is l~; X, xt , . . . )  c(x t, 1') (4) 
l~,x ~ 

where c(x, 1) is the concentration of the molecules A(x,1). The right-hand side of this 
equation represents a sum of terms; each of them is decisive for selection of a pair of 
molecules for reaction (cf. the section on simulation). 

The total rate of transformation of A(x, l) molecules by all possible intermolecular 
reactions, vii(x, 1), is given by 

vii(x, 1) = EVITjk(x,1) = (5) 
j , k  

= c(x,1) E I/~(lj, z~; x, x' , . . . )  c(x', 1') (6) 
j ,k , l~,x I 
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Analogously, 

vCT,jk(x, 1) = Kc(lj, lk; x . . . .  ) c(x,l) (7) 

VDT,r(x, 1) = KD(mr;x, 1,...)xc(m;x,1 ) (8) 

From the balance eqs. (1)-(3), one can write for the time change of concentrations 
of the molecules A(x, l): 

For intermolecular combination 

dc(x, 1) 
dt -- vi(x, l) 

i ! 
-~ E K I ( l j - l i + l , l ~ + l ; x - x ' , " ' ) x  

j , k , l l , x  I 

x c(x - x', 1 - 1' + l j )  c(x', 1' + lk) 

-c(x,l) E " ' "  K~(b, l~, x , x ,  .) c(x', l') (0) 
j ,k,l ' ,x '  

The first term on the right-hand side of eq. (9) means the rate of formation of the re- 
action product - -  the molecule A(x, 1) from two other (smaller) molecules. The rate of 
transformation of this molecule (i.e., the reaction in which the A(x, l) molecule is active), 
vlT(x, l), is characterized by the second term. 

For the intramolecular reaction 

tic(x, 1) 
dt ~ vc(x,l)  = -~-~Ifc(lj,l~;x,...)c(x,1) 

j,k 

+ y ~ K c ( l j + l , l k + l ) c ( x , l + l j + l k )  (10) 
j ,k  

The degradation equation giving VD(X, l) can be formulated per analogiam. 
The total change of c(x, l) with time is given by the sum 

dc(x, l)/dt = vx(x, l) + vc(x, l) + VD(X, l) (11) 

The structure of the kernels/(i  

g~(lj, l~; x , x ' , . . . )  02)  

adopted here is as follows: The rate depends primarily on the numbers of reacting groups 
in each reacting molecule, lj and l~. Therefore, these more important quantities are 
placed to the left of the semicolon. On the right-hand side of the semicolon there are 
placed structural characteristics affecting the apparent reactivity of the j and k groups. 
Their reactivity can be modified by the size and composition of the molecules, x, and 
other structural features, ( . . . ) .  Such formulation means that the apparent reactivity of 
a group in one molecule is dependent not only on its own reactivity and structure of its 
parent molecule but also on the structure of the reacting partner. This general dependence 
can be handled by the Monte-Carlo simulation. However, such complex dependence is 
usually not the case and one can factor out the effect of the internal structure of each 
reacting molecule in the following way: 
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l I . .  ~ I . .  I(i(lj, l k ;x ,x ,  .) = 5kF(Kzm(lj;x,...),KI~(lk;x', .)) (13) 

where the subscript m refers to molecule. F is a simple function of the molecular kernels, 
for instance a product I (~  x KIm, or a sum KI~ + KIm, or combination of both. The 
form of I(i~ can be of the exponent type 

K~(lj ;  x , . . )  = l; 

where a = a(x , . . . )  so that for product kernel 

(14) 

I .  l I = l a  l K~(lj, l~, • x , . . )  -- kj~ k(x, .) �9 . .  k ( x , . . . ) / f l k  (15) 

or for sum kernel 

I(I( lj, /k; X, Xt , . . . )  = ~jk[k(X . . . .  ) l ;  -t- ]~(X', . . .)Irk a'] (16) 

The constant kjk represents a reference intrinsic rate constant for a group j with a 
group k unaffected by the structure of the molecules they belong to. 

Such simplification makes the simulation much less time-consuming since the num- 
ber of operations necessary for evaluating the overall reaction rate is greatly reduced. 
According to our experience with simulation of random trifunctional polycondensation, 
the computing time for the type of kernel given by (13) is proportional to N TM whereas 
for the interdependent kernel (eq. (12)) it is proportional to N ~, where 3' -> 2.4. 

Simulat ion p rocedure  

The basic difference of the simulation procedure from the infinite sets of differential equa- 
tions characteristic of the kinetic theories is the finiteness of the system. Therefore, no 
molecule can grow to infinity and no infinite structure exists beyond the gel point. In 
Monte-Carlo simulations, one does not work with concentrations of molecules c(x, 1) but 
with numbers of molecules, N(x, 1). The distribution {N(x, 1)} at a given extent of reac- 
tion depends on the sequence of pseudorandom numbers generated in the given run and 
fluctuations in the distributions generated in different runs become smaller with increas- 
ing system size. The connection between the deterministic macroscopic kinetic process 
and stochastic mesoscopic simulation process is established by regarding 

q(x,  1) - (N(x, 1)) 
VNa (17) 

where V is the reaction volume, NA is the Avogadro number and (N(x, 1)) is expectation 
value or average of N(x, 1) over ensemble of realizations of the simulation process. The 
concentrations c4(x, 1) for the finite system is, however, not identical with c(x, 1) because 
the former is limited by the maximum possible values Xm, Ira. A general formulation of 
this problem was offered by Breuer et al. [8]. 

In simulated (finite) systems, the distinguishable molecules (types) can be num- 
bered and related quantities denoted by subscript i = 1 , . . . ,  ntype , where the number of 
types ntype varies during evolution. Thus, the system is characterized by the numbers of 
molecules Ni =-- N(xi,  11). Evolution of the system is simulated by a sequence of single 
steps each consisting in choosing one reaction event characterized (1) by the number of 
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participating molecules (one or two), (2) by types of reacting groups (j and k) and (3) by 
types of reacting molecules (i and possibly i'). The possibility of choosing a reaction is 
proportional to the rate of the reaction vcT,jk(i) for monomolecular and VIT,jk(i,i') for 
bimolecular reactions, given by the following equations: 

I V :  
VCTjk(i) = Kc(lij ,  lik;xi,...)V--~A (18) 

Ni Ni, 
Ki(hj, h,k; • x~,,...) VNA VNA for i r i ' (19a) 

1 Ni N ~ - I  i' vlW,jk(i,i') Ki(tlj, l ~ k ; x , x , . . . )  2 VNA V N h  for i = (19b) 

The rate of reaction of identical molecules (i = i') given by eq. (19b) is proportional to 
1 2 IN'2 , (Ni - 1) and not to ~N i , i.e., reactions of pairs of functional groups belonging to one 

molecule are excluded. The additional term corresponding to the rate of such "random" 
cyclization reactions 

1 Ni 1 
vCT(a),jk(i) -~ K,(llj, lik; xl, x i , . . . )  2 VNa  VNa  (20) 

approaches to zero in the limit of an infinite system for finite molecules (sol). For the 
infinite molecule, the gel, this rate is nonzero what can be demonstrated in the simple 
case KI(lld, lik; x l ,x i ,  . . .) = kjklljlik: 

lid lik Ni (21) 
VcT(a)'Jk(i) = kJkVNA VNA 2 

N~ - 1 for (one) gel molecule and l~j/VNA is its j - th  type functional group concentration 
(averaged over the whole system) a. This corresponds to the Flory-Stockmayer theory, 
where bonds between functional groups of the gel are always formed and the gel structure 
is no longer tree-like; the probability of formation of an intramolecular bond in the gel 
is proportional to the product of concentrations of the groups in the gel. This means 
that the bond formation within a molecule is still considered as a bimolecular reaction 
proceeding with a rate proportional to the product of group concentrations. 

The cyclization reactions distort the balance between I and x valid for a tree-like 
structure (which is, e.g. for an f-functional polycondensation, given by I = x ( f  - 2) + 2). 
The number of bonds in excess over that necessary for a tree, cycle rank ~, is then given 
by 

x ( f - 2 )  

2 
for a single component system, or 

r = ~ x, (f,  - 2) 
2 $ 

+ 1  (22) 

It  
-7 ~ ~ + I (23) 

for a multicomponent one, where x, is the number of monomeric units of functionality f ,  
and It is the number of unreacted functional groups of type t. 

1The factor 1/2 in eqs. (20) and (21) has been introduced because in subsequent summation, eq. (24), 
the reaction between a given pair of groups is counted twice (as jk and k j). 
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The technical principle of choosing the reaction event is as follows: First, the total 
r a t e  Vto t is calculated by summing up the respective rates of reaction events 

~type ntype 7~t ype 

V,o, = voT,Sk(i) + E v,T,sk(i, i') (24) 
j,k i=1 j,k 4=1 it=l 

A random number  r/ is produced by a generator of pseudorandom numbers which are 
uniformly distributed over the interval (0,1). Then the summation of increments vcw,jk(i) 
or V~T,jk(i,i') corresponding to eq. (24) is started in the defined order (Fig. 1) until  the 

I 
Monomolecular Intermolecular reactions [ 

.2... j=l,k=l j=l,k~2 . . .  

i t=l it=2 . . .  ir=l il~2 Vtot o ' I r i 
V ~ ~]~tot 

Figure 1: Connection between random number and reaction parameters. The horizontal axis is 
incremented by the rates of reactions characterized by (1) the mechanism (monomolecular or 
intermolecular), (2) types of reacting groups ( j  and k), (3) type of reacting molecule i and - -  in 
the case ofintermolecular reaction - -  also (4) type of second reacting molecule i ~. The increments 
are hierarchically assembled in four levels and separated by vertical lines of different height. The 
two largest compartments separated by the highest vertical line at v = vc correspond to total 
rates of all monomolecular and all intermolecular reactions, respectively, incremented at the 
second level (separated by the second highest vertical fines) by all reactions with fixed j and k, 
~ i  VCT,jk( i) or ~i,i' vIW,jk( i, i'). At the third and fourth levels also i ( vcw,jk( i) or ~i'  VIW,jk( i, i') ) 
and i ~ (VITjk(i, i')) are fixed. In this figure, the random number ~7 has chosen the intermolecular 
reaction with j = 1, k = 2, i = 2 and i' = 2 

partial  sum exceeds qVto t. The contributions to Vto t are hierarchically assembled in four 
levels. The highest level corresponds to the reaction mechanism (either monomolecular 
or intermolecular, bimolecular in this case), the second level to the types of groups that 
react ( j  and k), the third to the type of molecule selected (i)  and, possibly, the fourth 
to its reaction partner (i'). Such hierarchy makes it possible to decide about a reaction 
event in n,~ + ntype + ntype steps in contrast to random addition of the increments when 
the number  of steps would be equal to nre X ntype • ntype. 

In the case of the general kernel, the simulation program is still rather slow and 
the computat ion t ime significantly increases with increasing size of system due to a high 
number  (er nt2yp~) of increments contributing to Vto t. A dramatic improvement of the 
performance can be achieved if the restriction of functional form of the kernel given by eq. 
(13) is applied. In this case, the total rate and all necessary partial rates (corresponding to 
the three highest levels of our hierarchy scheme) can be expressed as simple combinations 
of terms like ~ Kxm(lq, x~,. . .)  N~ or ~ i  Ki~(lq, x~,.. .) K~(l ik ,  xi . . . .  ) Ni. The number  of 
operations in this case is proportional only to ntype and not to ntype2. With  the restricted 
form of kernel, a workstation-type computer can work with ~ 10 s units. 
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Finally, the selected reaction has been executed and the vector characterizing the 
resulting molecule is computed according to reaction eqs. (1) and (2) by which the distri- 
bution {N(x, l)} is modified. 

The scheme can be made more detailed. For instance, degradation can be included 
in the compartment of monomolecular reactions. 

Conclusions 

In this part, the differential equations governing the network formation process to be 
simulated have been formulated and the general features of the computer program have 
been characterized. In the second part, the efficiency and accuracy of the program will 
be tested as a function of the system size N and number of repetitions of the computer 
experiment. 
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